Minggu, 08 Januari 2012

spectra

Early Work

The first person to realize that white light was made up of the colors of the rainbow was Isaac Newton, who in 1666 passed sunlight through a narrow slit, then a prism, to project the colored spectrum on to a wall. This effect had been noticed previously, of course, not least in the sky, but previous attempts to explain it, by Descartes and others, had suggested that the white light became colored when it was refracted, the color depending on the angle of refraction. Newton clarified the situation by using a second prism to reconstitute the white light, making much more plausible the idea that the white light was composed of the separate colors. He then took a monochromatic component from the spectrum generated by one prism and passed it through a second prism, establishing that no further colors were generated. That is, light of a single color did not change color on refraction. He concluded that white light was made up of all the colors of the rainbow, and that on passing through a prism, these different colors were refracted through slightly different angles, thus separating them into the observed spectrum.

In 1752, the Scottish physicist Thomas Melvill discovered that putting different substances in flames, and passing the light through a prism, gave differently patterned spectra. Ordinary table salt, for example, generated a "bright yellow". Furthermore, not all the colors of the rainbow appeared - there were dark gaps in the spectrum, in fact for some materials there were just a few patches of light. By the 1820's, Herschel had recognized that spectra provided an excellent way to detect and identify small quantities of an element in a powder put into a flame.

Meanwhile, the white light of the sun was coming in for more detailed scrutiny. In 1802, William Wollaston in England had discovered (perhaps by using a thinner slit or a better prism) that in fact the solar spectrum itself had tiny gaps - there were many thin dark lines in the rainbow of colors. These were investigated much more systematically by Joseph von Fraunhofer, beginning in 1814. He increased the dispersion by using more than one prism. He found an "almost countless number" of lines. He labeled the strongest dark lines A, B, C, D, etc.
Foucault Connects Melvill's Bright Lines and Fraunhofer's Dark Lines

In 1849, Foucault (of speed of light and pendulum fame) examined the spectrum of light from a voltaic arc between carbon poles. He saw a bright double yellow line at exactly the same wavelength as Fraunhofer's dark D line in the solar spectrum. Investigating further, Foucault passed the sun's light through the arc, then through a prism. He observed that the D lines in the spectrum were even darker than usual. After testing with other sources, he concluded that the arc, which emitted light at the D line frequency, would also absorb light from another source at that frequency.

This discovery did not surprise Sir George Stokes in Cambridge. He pointed out that any mechanical system with a natural frequency of oscillation will emit at that frequency if disturbed, but will also absorb most readily at that frequency from incoming disturbances, the phenomenon of resonance (Dampier page 241).

Question: In a total eclipse of the sun, the only sunlight reaching earth comes from the hot gases of the sun's atmosphere, light from the sun's main disc being blocked by our moon. The light from these hot gases was analyzed during an eclipse in 1870. How do you think the spectrum observed related to that of full sunlight?

The spectrum of hydrogen, which turned out to be crucial in providing the first insight into atomic structure over half a century later, was first observed by Anders Angstrom in Uppsala, Sweden, in 1853. His communication was translated into English in 1855. Angstrom, the son of a country minister, was a reserved person, not interested in the social life that centered around the court. Consequently, it was many years before his achievements were recognized, at home or abroad (most of his results were published in Swedish). Meanwhile, in Freeport, Pennsylvania, in 1855, David Alter described the spectrum of hydrogen and other gases. In the 1840's, Alter had started the first commercial production of bromine from brines. He also found a way to extract oil from coal, but that proved uneconomic after the discovery of oil in Pennsylvania. His work was not widely recognized, either. (Dampier, BDS)

Bunsen and Kirchhoff

The first really systematic investigation of spectra was that of Bunsen and Kirchhoff, in Heidelberg, between 1855 and 1863. They used several techniques. For one thing, they introduced various salts into -- what else? -- the flame of a Bunsen burner. This was a very effective way of viewing spectra, because the Bunsen burner flame itself gave out practically no light. They also used the cooler flame of alcohol burning mixed with water to generate a vapor to study absorption spectra. Finally, they studied the spectra of electric arcs between electrodes of different materials. Using iron electrodes gave a spectrum that coincided with dark lines in the sun's spectrum. Copper electrodes did not. They concluded that the sun's atmosphere contained iron, but not much copper, and that, they said, seemed very plausible since there is so much iron in the earth, and in meteors.

Tidak ada komentar:

Posting Komentar